Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 21(11): e50830, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33124745

RESUMO

Inflammation associated with gram-negative bacterial infections is often instigated by the bacterial cell wall component lipopolysaccharide (LPS). LPS-induced inflammation and resulting life-threatening sepsis are mediated by the two distinct LPS receptors TLR4 and caspase-11 (caspase-4/-5 in humans). Whereas the regulation of TLR4 activation by extracellular and phago-endosomal LPS has been studied in great detail, auxiliary host factors that specifically modulate recognition of cytosolic LPS by caspase-11 are largely unknown. This study identifies autophagy-related and dynamin-related membrane remodeling proteins belonging to the family of Immunity-related GTPases M clade (IRGM) as negative regulators of caspase-11 activation in macrophages. Phagocytes lacking expression of mouse isoform Irgm2 aberrantly activate caspase-11-dependent inflammatory responses when exposed to extracellular LPS, bacterial outer membrane vesicles, or gram-negative bacteria. Consequently, Irgm2-deficient mice display increased susceptibility to caspase-11-mediated septic shock in vivo. This Irgm2 phenotype is partly reversed by the simultaneous genetic deletion of the two additional Irgm paralogs Irgm1 and Irgm3, indicating that dysregulated Irgm isoform expression disrupts intracellular LPS processing pathways that limit LPS availability for caspase-11 activation.


Assuntos
Lipopolissacarídeos , Choque Séptico , Animais , Caspases/genética , Caspases Iniciadoras , Dinaminas , Inflamassomos , Lipopolissacarídeos/toxicidade , Camundongos , Choque Séptico/induzido quimicamente , Choque Séptico/genética
2.
Wellcome Open Res ; 4: 124, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31544161

RESUMO

Background: Infections cause the production of inflammatory cytokines such as Interferon gamma (IFNγ). IFNγ in turn prompts the upregulation of a range of host defence proteins including members of the family of guanylate binding proteins (Gbps). In humans and mice alike, GBPs restrict the intracellular replication of invasive microbes and promote inflammation. To study the physiological functions of Gbp family members, the most commonly chosen in vivo models are mice harbouring loss-of-function mutations in either individual Gbp genes or the entire Gbp gene cluster on mouse chromosome 3. Individual Gbp deletion strains differ in their design, as some strains exist on a pure C57BL/6 genetic background, while other strains contain a 129-derived genetic interval encompassing the Gbp gene cluster on an otherwise C57BL/6 genetic background. Methods: To determine whether the presence of 129 alleles of paralogous Gbps could influence the phenotypes of 129-congenic Gbp-deficient strains, we studied the expression of Gbps in both C57BL/6J and 129/Sv mice following in vivo stimulation with adjuvants and after infection with either Toxoplasma gondii or Shigella flexneri. Results: We show that C57BL/6J relative to 129/Sv mice display moderately elevated expression of Gbp2, but more prominently, are also defective for Gbp2b (formerly Gbp1) mRNA induction upon immune priming. Notably, Toxoplasma infections induce robust Gbp2b protein expression in both strains of mice, suggestive of a Toxoplasma-activated mechanism driving Gbp2b protein translation. We further find that the higher expression of Gbp2b mRNA in 129/Sv mice correlates with a gene duplication event at the Gbp2b locus resulting in two copies of the Gbp2b gene on the haploid genome of the 129/Sv strain. Conclusions: Our findings demonstrate functional differences between 129 and C57BL/6 Gbp alleles which need to be considered in the design and interpretation of studies utilizing mouse models, particularly for phenotypes influenced by Gbp2 or Gbp2b expression.

3.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967464

RESUMO

Interferon-regulated immune defenses protect mammals from pathogenically diverse obligate intracellular bacterial pathogens of the genus Chlamydia Interferon gamma (IFN-γ) is especially important in controlling the virulence of Chlamydia species and thus impacts the modeling of human chlamydial infection and disease in mice. How IFN-γ contributes to cell-autonomous defenses against Chlamydia species and how these pathogens evade IFN-γ-mediated immunity in their natural hosts are not well understood. We conducted a genetic screen which identified 31 IFN-γ-sensitive (Igs) mutants of the mouse model pathogen Chlamydia muridarum Genetic suppressor analysis and lateral gene transfer were used to map the phenotype of one of these mutants, Igs4, to a missense mutation in a putative chlamydial inclusion membrane protein, TC0574. We observed the lytic destruction of Igs4-occupied inclusions and accompanying host cell death in response to IFN-γ priming or various proapoptotic stimuli. However, Igs4 was insensitive to IFN-γ-regulated cell-autonomous defenses previously implicated in anti-Chlamydia trachomatis host defense in mice. Igs4 inclusion integrity was restored by caspase inhibitors, indicating that the IFN-γ-mediated destruction of Igs4 inclusions is dependent upon the function of caspases or related prodeath cysteine proteases. We further demonstrated that the Igs4 mutant is immune restricted in an IFN-γ-dependent manner in a mouse infection model, thereby implicating IFN-γ-mediated inclusion destruction and host cell death as potent in vivo host defense mechanisms to which wild-type C. muridarum is resistant. Overall, our results suggest that C. muridarum evolved resistance mechanisms to counter IFN-γ-elicited programmed cell death and the associated destruction of intravacuolar pathogens.IMPORTANCE Multiple obligatory intracellular bacteria in the genus Chlamydia are important pathogens. In humans, strains of C. trachomatis cause trachoma, chlamydia, and lymphogranuloma venereum. These diseases are all associated with extended courses of infection and reinfection that likely reflect the ability of chlamydiae to evade various aspects of host immune responses. Interferon-stimulated genes, driven in part by the cytokine interferon gamma, restrict the host range of various Chlamydia species, but how these pathogens evade interferon-stimulated genes in their definitive host is poorly understood. Various Chlamydia species can inhibit death of their host cells and may have evolved this strategy to evade prodeath signals elicited by host immune responses. We present evidence that chlamydia-induced programmed cell death resistance evolved to counter interferon- and immune-mediated killing of Chlamydia-infected cells.


Assuntos
Apoptose , Chlamydia muridarum/imunologia , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Imunidade Inata , Interferon gama/metabolismo , Animais , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/genética , Modelos Animais de Doenças , Testes Genéticos , Corpos de Inclusão/microbiologia , Camundongos
4.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G95-G105, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30335469

RESUMO

Crohn's disease (CD) is a chronic inflammatory gastrointestinal disorder. Genetic association studies have implicated dysregulated autophagy in CD. Among risk loci identified are a promoter single nucleotide polymorphism (SNP)( rs13361189 ) and two intragenic SNPs ( rs9637876 , rs10065172 ) in immunity-related GTPase family M ( IRGM) a gene that encodes a protein of the autophagy initiation complex. All three SNPs have been proposed to modify IRGM expression, but reports have been divergent and largely derived from cell lines. Here, analyzing RNA-Sequencing data of human tissues from the Genotype-Tissue Expression Project, we found that rs13361189 minor allele carriers had reduced IRGM expression in whole blood and terminal ileum, and upregulation in ileum of ZNF300P1, a locus adjacent to IRGM on chromosome 5q33.1 that encodes a long noncoding RNA. Whole blood and ileum from minor allele carriers had altered expression of multiple additional genes that have previously been linked to colitis and/or autophagy. Notable among these was an increase in ileum of LTF (lactoferrin), an established fecal inflammatory biomarker of CD, and in whole blood of TNF, a key cytokine in CD pathogenesis. Last, we confirmed that risk alleles at all three loci associated with increased risk for CD but not ulcerative colitis in a case-control study. Taken together, our findings suggest that genetically encoded IRGM deficiency may predispose to CD through dysregulation of inflammatory gene networks. Gene expression profiling of disease target tissues in genetically susceptible populations is a promising strategy for revealing new leads for the study of molecular pathogenesis and, potentially, for precision medicine. NEW & NOTEWORTHY Single nucleotide polymorphisms in immunity-related GTPase family M ( IRGM), a gene that encodes an autophagy initiation protein, have been linked epidemiologically to increased risk for Crohn's disease (CD). Here, we show for the first time that subjects with risk alleles at two such loci, rs13361189 and rs10065172 , have reduced IRGM expression in whole blood and terminal ileum, as well as dysregulated expression of a wide array of additional genes that regulate inflammation and autophagy.


Assuntos
Autofagia/genética , Colite Ulcerativa/genética , Doença de Crohn/genética , Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Estudos de Casos e Controles , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Humanos , Risco
5.
mBio ; 8(6)2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233899

RESUMO

Dynamin-like guanylate binding proteins (GBPs) are gamma interferon (IFN-γ)-inducible host defense proteins that can associate with cytosol-invading bacterial pathogens. Mouse GBPs promote the lytic destruction of targeted bacteria in the host cell cytosol, but the antimicrobial function of human GBPs and the mechanism by which these proteins associate with cytosolic bacteria are poorly understood. Here, we demonstrate that human GBP1 is unique among the seven human GBP paralogs in its ability to associate with at least two cytosolic Gram-negative bacteria, Burkholderia thailandensis and Shigella flexneri Rough lipopolysaccharide (LPS) mutants of S. flexneri colocalize with GBP1 less frequently than wild-type S. flexneri does, suggesting that host recognition of O antigen promotes GBP1 targeting to Gram-negative bacteria. The targeting of GBP1 to cytosolic bacteria, via a unique triple-arginine motif present in its C terminus, promotes the corecruitment of four additional GBP paralogs (GBP2, GBP3, GBP4, and GBP6). GBP1-decorated Shigella organisms replicate but fail to form actin tails, leading to their intracellular aggregation. Consequentially, the wild type but not the triple-arginine GBP1 mutant restricts S. flexneri cell-to-cell spread. Furthermore, human-adapted S. flexneri, through the action of one its secreted effectors, IpaH9.8, is more resistant to GBP1 targeting than the non-human-adapted bacillus B. thailandensis These studies reveal that human GBP1 uniquely functions as an intracellular "glue trap," inhibiting the cytosolic movement of normally actin-propelled Gram-negative bacteria. In response to this powerful human defense program, S. flexneri has evolved an effective counterdefense to restrict GBP1 recruitment.IMPORTANCE Several pathogenic bacterial species evolved to invade, reside in, and replicate inside the cytosol of their host cells. One adaptation common to most cytosolic bacterial pathogens is the ability to coopt the host's actin polymerization machinery in order to generate force for intracellular movement. This actin-based motility enables Gram-negative bacteria, such as Shigella species, to propel themselves into neighboring cells, thereby spreading from host cell to host cell without exiting the intracellular environment. Here, we show that the human protein GBP1 acts as a cytosolic "glue trap," capturing cytosolic Gram-negative bacteria through a unique protein motif and preventing disseminated infections in cell culture models. To escape from this GBP1-mediated host defense, Shigella employs a virulence factor that prevents or dislodges the association of GBP1 with cytosolic bacteria. Thus, therapeutic strategies to restore GBP1 binding to Shigella may lead to novel treatment options for shigellosis in the future.


Assuntos
Actinas/metabolismo , Motivos de Aminoácidos , Arginina/química , Citosol/microbiologia , Proteínas de Ligação ao GTP/química , Shigella flexneri/fisiologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Burkholderia/fisiologia , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Lipopolissacarídeos/genética , Mutação , Antígenos O/metabolismo , Shigella flexneri/patogenicidade , Ubiquitinação , Fatores de Virulência
6.
mBio ; 8(5)2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28974614

RESUMO

The Gram-negative bacterial cell wall component lipopolysaccharide (LPS) is recognized by the noncanonical inflammasome protein caspase-11 in the cytosol of infected host cells and thereby prompts an inflammatory immune response linked to sepsis. Host guanylate binding proteins (GBPs) promote infection-induced caspase-11 activation in tissue culture models, and yet their in vivo role in LPS-mediated sepsis has remained unexplored. LPS can be released from lysed bacteria as "free" LPS aggregates or actively secreted by live bacteria as a component of outer membrane vesicles (OMVs). Here, we report that GBPs control inflammation and sepsis in mice injected with either free LPS or purified OMVs derived from Gram-negative Escherichia coli In agreement with our observations from in vivo experiments, we demonstrate that macrophages lacking GBP2 expression fail to induce pyroptotic cell death and proinflammatory interleukin-1ß (IL-1ß) and IL-18 secretion when exposed to OMVs. We propose that in order to activate caspase-11 in vivo, GBPs control the processing of bacterium-derived OMVs by macrophages as well as the processing of circulating free LPS by as-yet-undetermined cell types.IMPORTANCE The bacterial cell wall component LPS is a strong inducer of inflammation and is responsible for much of the toxicity of Gram-negative bacteria. Bacteria shed some of their cell wall and its associated LPS in the form of outer membrane vesicles (OMVs). Recent work demonstrated that secreted OMVs deliver LPS into the host cell cytosol by an unknown mechanism, resulting in the activation of the proinflammatory LPS sensor caspase-11. Here, we show that activation of cytosolic caspase-11 by OMVs requires additional host factors, the so-called guanylate binding proteins (GBPs). The discovery of GBPs as regulators of OMV-mediated inflammation paves the way toward a mechanistic understanding of the host response toward bacterial OMVs and may lead to effective strategies to ameliorate inflammation induced by bacterial infections.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Escherichia coli/patogenicidade , Proteínas de Ligação ao GTP/metabolismo , Inflamassomos/imunologia , Inflamassomos/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Animais , Proteínas da Membrana Bacteriana Externa/administração & dosagem , Proteínas da Membrana Bacteriana Externa/genética , Caspases/metabolismo , Caspases Iniciadoras , Células Cultivadas , Citosol/metabolismo , Ativação Enzimática , Inflamação , Interleucina-18/biossíntese , Interleucina-1beta/biossíntese , Lipopolissacarídeos/imunologia , Camundongos , Piroptose , Vesículas Secretórias/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(9): E1698-E1706, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28193861

RESUMO

Many invasive bacteria establish pathogen-containing vacuoles (PVs) as intracellular niches for microbial growth. Immunity to these infections is dependent on the ability of host cells to recognize PVs as targets for host defense. The delivery of several host defense proteins to PVs is controlled by IFN-inducible guanylate binding proteins (GBPs), which themselves dock to PVs through poorly characterized mechanisms. Here, we demonstrate that GBPs detect the presence of bacterial protein secretion systems as "patterns of pathogenesis" associated with PVs. We report that the delivery of GBP2 to Legionella-containing vacuoles is dependent on the bacterial Dot/Icm secretion system, whereas the delivery of GBP2 to Yersinia-containing vacuoles (YCVs) requires hypersecretion of Yersinia translocon proteins. We show that the presence of bacterial secretion systems directs cytosolic carbohydrate-binding protein Galectin-3 to PVs and that the delivery of GBP1 and GBP2 to Legionella-containing vacuoles or YCVs is substantially diminished in Galectin-3-deficient cells. Our results illustrate that insertion of bacterial secretion systems into PV membranes stimulates Galectin-3-dependent recruitment of antimicrobial GBPs to PVs as part of a coordinated host defense program.


Assuntos
Anti-Infecciosos/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Galectina 3/metabolismo , Vacúolos/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Legionella/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Receptores de Superfície Celular/metabolismo
8.
Cell Host Microbe ; 21(1): 113-121, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28041929

RESUMO

Evading cell death is critical for Chlamydia to maintain a replicative niche, but the underlying mechanisms are unknown. We screened a library of Chlamydia mutants for modulators of cell death. Inactivation of the inclusion membrane protein CpoS (Chlamydia promoter of survival) induced rapid apoptotic and necrotic death in infected cells. The protection afforded by CpoS is limited to the inclusion in which it resides, indicating that it counteracts a spatially restricted pro-death signal. CpoS-deficient Chlamydia induced an exacerbated type I interferon response that required the host cGAS/STING/TBK1/IRF3 signaling pathway. Disruption of STING, but not cGAS or IRF3, attenuated cell death, suggesting that STING mediates Chlamydia-induced cell death independent of its role in regulating interferon responses. CpoS-deficient strains are attenuated in their ability to propagate in cell culture and are cleared faster from the murine genital tract, highlighting the importance of CpoS for Chlamydia pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Morte Celular/imunologia , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Interferon Tipo I/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlorocebus aethiops , Feminino , Células HeLa , Humanos , Fator Regulador 3 de Interferon/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Células Vero
9.
mBio ; 7(6)2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27965446

RESUMO

The cytokine gamma interferon (IFN-γ) induces cell-autonomous immunity to combat infections with intracellular pathogens, such as the bacterium Chlamydia trachomatis The present study demonstrates that IFN-γ-primed human cells ubiquitinate and eliminate intracellular Chlamydia-containing vacuoles, so-called inclusions. We previously described how IFN-γ-inducible immunity-related GTPases (IRGs) employ ubiquitin systems to mark inclusions for destruction in mouse cells and, furthermore, showed that the rodent pathogen Chlamydia muridarum blocks ubiquitination of its inclusions by interfering with mouse IRG function. Here, we report that ubiquitination of inclusions in human cells is independent of IRG and thus distinct from the murine pathway. We show that C. muridarum is susceptible to inclusion ubiquitination in human cells, while the closely related human pathogen C. trachomatis is resistant. C. muridarum, but not C. trachomatis, inclusions attract several markers of cell-autonomous immunity, including the ubiquitin-binding protein p62, the ubiquitin-like protein LC3, and guanylate-binding protein 1. Consequently, we find that IFN-γ priming of human epithelial cells triggers the elimination of C. muridarum, but not C. trachomatis, inclusions. This newly described defense pathway is independent of indole-2,3-dioxygenase, a known IFN-γ-inducible anti-Chlamydia resistance factor. Collectively, our observations indicate that C. trachomatis evolved mechanisms to avoid a human-specific, ubiquitin-mediated response as part of its unique adaptation to its human host. IMPORTANCE: Chlamydia trachomatis is the leading cause of sexually transmitted bacterial infections and responsible for significant morbidity, including pelvic inflammatory disease, infertility, and ectopic pregnancies in women. As an obligate intracellular pathogen, C. trachomatis is in perpetual conflict with cell-intrinsic defense programs executed by its human host. Our study defines a novel anti-Chlamydia host resistance pathway active in human epithelial cells. This defense program promotes the deposition of the small antimicrobial protein ubiquitin on vacuoles containing Chlamydia We show that this ubiquitin-based resistance pathway of human cells is highly effective against a Chlamydia species adapted to rodents but ineffective against human-adapted C. trachomatis This observation indicates that C. trachomatis evolved strategies to avoid entrapment within ubiquitin-labeled vacuoles as part of its adaptation to the human innate immune system.


Assuntos
Chlamydia trachomatis/imunologia , Chlamydia trachomatis/fisiologia , Células Epiteliais/imunologia , Interações Hospedeiro-Patógeno , Interferon gama/imunologia , Células A549 , Animais , Chlamydia muridarum/imunologia , Chlamydia muridarum/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Proteínas de Ligação ao GTP/metabolismo , Células HeLa , Humanos , Imunidade Inata , Corpos de Inclusão/efeitos dos fármacos , Corpos de Inclusão/microbiologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Ubiquitinação , Vacúolos/microbiologia
10.
FEMS Microbiol Rev ; 40(6): 875-893, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28201690

RESUMO

The bacterium Chlamydia trachomatis is the etiological agent of the most common sexually transmitted infection in North America and Europe. Medical complications resulting from genital C. trachomatis infections arise predominantly in women where the initial infections often remain asymptomatic and thus unrecognized. Untreated asymptomatic infections in women can ascend into the upper genital tract and establish persistence, ultimately resulting in extensive scarring of the reproductive organs, pelvic inflammatory disease, infertility and ectopic pregnancies. Previously resolved C. trachomatis infections fail to provide protective immune memory, and no effective vaccine against C. trachomatis is currently available. Critical determinants of the pathogenesis and immunogenicity of genital C. trachomatis infections are cell-autonomous immune responses. Cell-autonomous immunity describes the ability of an individual host cell to launch intrinsic immune circuits that execute the detection, containment and elimination of cell-invading pathogens. As an obligate intracellular pathogen C. trachomatis is constantly under attack by cell-intrinsic host defenses. Accordingly, C. trachomatis evolved to subvert and co-opt cell-autonomous immune pathways. This review will provide a critical summary of our current understanding of cell-autonomous immunity to C. trachomatis and its role in shaping host resistance, inflammation and adaptive immunity to genital C. trachomatis infections.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Modelos Imunológicos , Humanos , Inflamassomos/imunologia , Receptores Toll-Like/imunologia
11.
Infect Immun ; 83(12): 4740-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416908

RESUMO

Interferon (IFN)-inducible guanylate binding proteins (GBPs) mediate cell-autonomous host resistance to bacterial pathogens and promote inflammasome activation. The prevailing model postulates that these two GBP-controlled activities are directly linked through GBP-dependent vacuolar lysis. It was proposed that the rupture of pathogen-containing vacuoles (PVs) by GBPs destroyed the microbial refuge and simultaneously contaminated the host cell cytosol with microbial activators of inflammasomes. Here, we demonstrate that GBP-mediated host resistance and GBP-mediated inflammatory responses can be uncoupled. We show that PVs formed by the rodent pathogen Chlamydia muridarum, so-called inclusions, remain free of GBPs and that C. muridarum is impervious to GBP-mediated restrictions on bacterial growth. Although GBPs neither bind to C. muridarum inclusions nor restrict C. muridarum growth, we find that GBPs promote inflammasome activation in C. muridarum-infected macrophages. We demonstrate that C. muridarum infections induce GBP-dependent pyroptosis through both caspase-11-dependent noncanonical and caspase-1-dependent canonical inflammasomes. Among canonical inflammasomes, we find that C. muridarum and the human pathogen Chlamydia trachomatis activate not only NLRP3 but also AIM2. Our data show that GBPs support fast-kinetics processing and secretion of interleukin-1ß (IL-1ß) and IL-18 by the NLRP3 inflammasome but are dispensable for the secretion of the same cytokines at later times postinfection. Because IFN-γ fails to induce IL-1ß transcription, GBP-dependent fast-kinetics inflammasome activation can drive the preferential processing of constitutively expressed IL-18 in IFN-γ-primed macrophages in the absence of prior Toll-like receptor stimulation. Together, our results reveal that GBPs control the kinetics of inflammasome activation and thereby shape macrophage responses to Chlamydia infections.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia muridarum/imunologia , Proteínas de Ligação ao GTP/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Infecções por Chlamydia/genética , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia muridarum/genética , Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/genética , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/patogenicidade , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Fibroblastos/imunologia , Fibroblastos/microbiologia , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Corpos de Inclusão/imunologia , Corpos de Inclusão/microbiologia , Inflamassomos/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-18/genética , Interleucina-18/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Cultura Primária de Células , Transdução de Sinais , Vacúolos/imunologia , Vacúolos/microbiologia
12.
Proc Natl Acad Sci U S A ; 112(41): E5628-37, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417105

RESUMO

Many microbes create and maintain pathogen-containing vacuoles (PVs) as an intracellular niche permissive for microbial growth and survival. The destruction of PVs by IFNγ-inducible guanylate binding protein (GBP) and immunity-related GTPase (IRG) host proteins is central to a successful immune response directed against numerous PV-resident pathogens. However, the mechanism by which IRGs and GBPs cooperatively detect and destroy PVs is unclear. We find that host cell priming with IFNγ prompts IRG-dependent association of Toxoplasma- and Chlamydia-containing vacuoles with ubiquitin through regulated translocation of the E3 ubiquitin ligase tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6). This initial ubiquitin labeling elicits p62-mediated escort and deposition of GBPs to PVs, thereby conferring cell-autonomous immunity. Hypervirulent strains of Toxoplasma gondii evade this process via specific rhoptry protein kinases that inhibit IRG function, resulting in blockage of downstream PV ubiquitination and GBP delivery. Our results define a ubiquitin-centered mechanism by which host cells deliver GBPs to PVs and explain how hypervirulent parasites evade GBP-mediated immunity.


Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , Proteínas de Ligação ao GTP/imunologia , Evasão da Resposta Imune , Toxoplasma/imunologia , Toxoplasmose/imunologia , Ubiquitina/imunologia , Vacúolos/imunologia , Animais , Proteínas de Ligação ao GTP/genética , Imunidade Inata , Camundongos , Camundongos Knockout , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Toxoplasmose/genética , Toxoplasmose/patologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Vacúolos/metabolismo , Vacúolos/microbiologia
13.
PLoS One ; 9(9): e106434, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25184567

RESUMO

MicroRNAs are expressed by all multicellular organisms and play a critical role as post-transcriptional regulators of gene expression. Moreover, different microRNA species are known to influence the progression of a range of different diseases, including cancer and microbial infections. A number of different human viruses also encode microRNAs that can attenuate cellular innate immune responses and promote viral replication, and a fungal pathogen that infects plants has recently been shown to express microRNAs in infected cells that repress host cell immune responses and promote fungal pathogenesis. Here, we have used deep sequencing of total expressed small RNAs, as well as small RNAs associated with the cellular RNA-induced silencing complex RISC, to search for microRNAs that are potentially expressed by intracellular bacterial pathogens and translocated into infected animal cells. In the case of Legionella and Chlamydia and the two mycobacterial species M. smegmatis and M. tuberculosis, we failed to detect any bacterial small RNAs that had the characteristics expected for authentic microRNAs, although large numbers of small RNAs of bacterial origin could be recovered. However, a third mycobacterial species, M. marinum, did express an ∼ 23-nt small RNA that was bound by RISC and derived from an RNA stem-loop with the characteristics expected for a pre-microRNA. While intracellular expression of this candidate bacterial microRNA was too low to effectively repress target mRNA species in infected cultured cells in vitro, artificial overexpression of this potential bacterial pre-microRNA did result in the efficient repression of a target mRNA. This bacterial small RNA therefore represents the first candidate microRNA of bacterial origin.


Assuntos
Carboxipeptidases/genética , Sequenciamento de Nucleotídeos em Larga Escala , Imunidade Inata/genética , MicroRNAs/isolamento & purificação , Chlamydia/genética , Chlamydia/isolamento & purificação , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Legionella/genética , Legionella/isolamento & purificação , MicroRNAs/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação
14.
Appl Microbiol Biotechnol ; 98(18): 8005-15, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903815

RESUMO

Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Frankia/metabolismo , Proteínas de Bactérias/genética , Frankia/genética , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...